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Focusing contribution of individual pinholes of a photon
sieve: dependence on the order of local ring of underlying
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A photon sieve can be composed of a large number of circular pinholes. Each circular pinhole has a contri-
bution to the focusing. For the case of point-to-point imaging, the focusing contribution of an individual
circular pinhole can be analytically given. We investigate the dependence of the focusing contribution on
the order m of local ring of underlying traditional Fresnel zone plate. In particular, we find that the focus-
ing contribution is simply inversely proportional to the order m. We also present an intuitive explanation.
These results are helpful for better understanding of the focusing property of photon sieves.
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The focusing and imaging of soft X-ray and extreme
ultraviolet (EUV) radiation have applications in many
fields. However, refractive lenses are prevented from
imaging and focusing in these spectral regions because
of strong absorption. Traditional Fresnel zone plates can
be used for this kind of focusing[1−3], but its resolution
is approximately the order of the width of the outermost
zone[4−6]. In 2001, Kipp et al. suggested the novel con-
cept of photon sieve, which consists of a great number
of pinholes properly distributed over the Fresnel zones[7].
Because photon sieves make it possible to focus soft X-
rays to spot sizes smaller than the diameter of the small-
est pinhole, it may be used in soft X-ray microscopy,
lithography, and spectroscopy[7−12]. Besides the focus-
ing and imaging of soft X-rays, photon sieves also offer a
new approach for the construction of ultra-large (>20 m)
space telescope primaries[13−15] and for laser free-space
communication system[16]. In addition, fractal photon
sieve, multi-wavelength and phase photon sieve have also
been suggested[17−21].

As an important theoretical work, an individual far-
field model for the imaging and focusing of photon sieve
was previously presented[8,9]. For the important case of
point-to-point imaging, the dependence of focusing con-
tribution on the ratio of the diameter of the circular
pinhole to the width of the local Fresnel ring of under-
lying traditional Fresnel zone plate was investigated in
detail[8,9].

In this letter, we further investigate the important case
of point-to-point imaging. In particular, we discuss the
dependence of focusing contribution on the order m of
local rings of underlying traditional Fresnel zone plate.
An analytical expression for this kind of dependence is
derived and the related explanation is given.

As shown in Fig. 1, for the case of point-to-point imag-
ing, the object point O and the focal point (or image
point) S are both on the optical axis. The distance from
the object point to the photon sieve plane is p and the
distance from the photon sieve plane to the focal point is

q. We denote the photon sieve plane by the x− y plane
and the focal plane (or image plane) by the X−Y plane.
The coordinates of the center of the nth circular pinhole
are denoted by (xn,yn). Similarly, the distance from the
center of the photon sieve to the center of the nth cir-
cular pinhole is denoted by rn. Obviously, r2

n = x2
n+y2

n.
The distance between the object point and the center of
the nth circular pinhole is Pn. The distance between the
center of the nth circular pinhole and the focal point is
Qn. Pn = (p2+r2

n)1/2, Qn = (q2+r2
n)1/2.

Based on the scalar diffraction theory and the small-
size property of the individual circular pinholes, an in-
dividual far-field model for the imaging and focusing
of photon sieves was developed[8,9]. According to the
individual far-field model, each circular pinhole has a
diffracted field Un(X, Y ) at the focal plane and this field
has reached its own far-field, where n denotes the nth pin-
hole. According to the linear superposition principle, the
total diffracted field U(X,Y) is the simple sum of those
individual far-fields Un(X, Y ). As a result of the individ-
ual far-field model, the field value Un(0,0) at the focal
point was explicitly presented[8,9]. In particular, for the
important case of point-to-point imaging, the following
formula was derived in[8,9]

Un(0, 0) ∝ d

w
J1

(
π

2
d

w

)
, (1)

Fig. 1. (a) Schematic view of a photon sieve for point-to-point
imaging; (b) transverse plane of the photon sieve.
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where d is the diameter of the nth circular pinhole, w is
the width of the local ring of underlying traditional Fres-
nel zone plate, and J1(·) is the first-order Bessel function
of the first kind. Equation (1) reveals the dependence of
focusing contribution of the nth circular pinhole on the
ratio d/w.

We investigate the influence on the focusing contribu-
tion from the order m of the local ring at which the nth
circular pinhole is located. For simplicity, we assume
that the nth pinhole is centered on a circle whose radius
is rm. It should be noted that rm−w/2 and rm+w/2 are
the lower and upper edges of the mth local ring (i.e., the
mth white zone in Ref. [7]) of the underlying traditional
Fresnel zone plate, respectively. We start from Eq. (16)
of Ref. [9], which is the complete expression for the nth
diffracted field value Un(0,0) at the focal point:

Un(0, 0) =
kqAna2

n

Q2
n

exp [jk(Pn + Qn)] Jinc
(

kan

fn
rn

)
, (2)

where Jinc(·)=J1(·)/(·), an is the radius of the nth cir-
cular pinhole, and An is the field value of the incident
spherical wave at the nth circular pinhole. As an approx-
imation, the parameter An can be regarded as a constant
for all the pinholes. For this reason, we shall ignore the
parameter An. The center of the nth circular pinhole is
located at the center of the mth local ring of underlying
traditional Fresnel zone plate. So in this case, rn = rm,
Pn = Pm, Qn = Qm, and fn = fm. Substituting these
relations into Eq. (2), we get

Un (0, 0) =
qanfm

rmQ2
m

exp [jk (Pm + Qm)] J1

(
kanrm

fm

)
. (3)

We know that the phase factor changes very rapidly while
the amplitude changes very slowly with the coordinate
on the focal plane. So we can deal with the phase fac-
tor on the non-paraxial condition while the amplitude
part on the paraxial condition. According to the theory
of Fresnel zone plate, the optical path difference of the
lower (or upper) edges of the two adjacent white zones
to the focal point is a wavelength. In this way, we know
Pm+Qm−p−q = mλ. By use of this relation in Eq. (3),
one can get

Un (0, 0) =
q

Q2
m

fm

rm
anJ1

(
kanrm

fm

)
. (4)

Using the relation an = d/2 and w ≈ λfm/(2rm)[9] in
Eq. (4), we can further get

Un (0, 0) ≈ g(rm)
d

w
J1

(
π

2
d

w

)
, (5)

where

g (rm) =
λq

4
1

r2
m

(
fm

Qm

)2

. (6)

Using the relation 1/fm = 1/Pm+1/Qm in Eq. (6), we
get

g (rm) =
λq

4
1

r2
m

(
1

1 + Qm/Pm

)2

=
λq

4
1

r2
m

(
1 +

Qm

Pm

)−2

. (7)

Substituting the two approximations Pm = (p2+r2
m)1/2 ≈

p and Qm = (q2+r2
m)1/2 ≈ q into Eq. (7), we can further

get

g (rm) ≈ λq

4
1

r2
m

(
1 +

q

p

)−2

. (8)

It should be emphasized that for a photon sieve or
a Fresnel zone plate working in the soft X-ray region,
a numerical aperture (NA) value of ∼0.05 can be re-
garded as high and a NA value of ∼0.2 can be regarded
as rather high. Of course, the absolute value of NA
is still small. For a NA not larger than 0.2, we can
use Pm ≈ p[1 + r2

m/(2p2)] and Qm ≈ q[1 + r2
m/(2q2)].

Comparing Eqs. (5) and (8) with Eq. (1), one can see
that the factor g(rm), which does not appear in Eq. (1),
is inversely proportional to the square of the param-
eter rm. For the Fresnel zone plate, we know that
(p2+r2

m)1/2+(q2+r2
m)1/2 − p − q = mλ, m = 0,1,2,· · · .

In terms of binomial expansion, one can obtain rm ≈
[2mλpq/(p + q)]1/2. Inserting this relation into Eq. (8),
we can further get

g (m) ≈ 1
8m

p

p + q
. (9)

It should be pointed out that the relation rm ≈
[2mλpq/(p + q)]1/2 is only an approximate expression.
This approximate expression can be used to get the de-
pendence relation g(m). However, for the exact calcula-
tion of the parameter rm, one should still use the exact
relation (p2+r2

m)1/2+(q2+r2
m)1/2−p−q = mλ. The exact

expression for rm can be analytically given in a somewhat
complicated form. Here we do not further discuss this is-
sue.

For a certain photon sieve, the parameters p and q
are given. These two parameters are the same for all
the circular pinholes of a photon sieve and can be re-
garded as two constants. After ignoring the constant
factor p/[8(p + q)], one can further obtain

g (m) ≈ 1
m

. (10)

Equation (10) explicitly reveals that g(m) is simply in-
versely proportional to the order m.

To understand the above results better, we now present
an intuitive explanation. For simplicity, consider the spe-
cial case of a plane wave illumination for which p = ∞.
We also suppose that, as shown in Fig. 2, the pinholes are
located one by one without interval. Thus, the perimeter
of the mth ring of underlying Fresnel zone plate is ap-
proximately equal to the sum of the diameter of all the
pinholes on the same ring. That is to say,

2π rm = Nmd, (11)

where Nm is the number of pinholes on the mth ring.
Note that Nm can be a non-integer in theory.

We suppose that the ratio d/w is a constant η. Then

Nm =
2π rm

ηw
. (12)

It is known that the width w of the mth local ring of
underlying traditional Fresnel zone plate can be approx-
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Fig. 2. Pinholes in different local rings of underlying tradi-
tional Fresnel zone plate when the ratio d/w is fixed. (a)
Pinholes in a lower-order ring; (b) pinholes in a higher-order
ring.

imately given by w ≈ λfm/(2rm), where fm can be de-
termined by 1/fm = 1/Pm +1/Qm. Substituting this
relation into Eq. (12), we can get

Nm ≈ 4π

λη

r2
m

fm
. (13)

Because the photon sieve is illuminated by a plane wave
for which p = ∞, the parameter Pm is infinite. Then fm

is approximately given by

fm = Qm =
(
q2 + r2

m

)1/2 ≈ q, (14)

where we have used the property of q À rm. By use
of another approximation of r2

m ≈ 2mλq, we can further
obtain

Nm ≈ 4π

ληq
r2
m ∝ m. (15)

Equation (15) shows that, just as we have found, there
are more pinholes on a higher-order local ring than those
on a lower-order local ring if d/w is constant. It can be
proved that all the individual focusing contributions (i.e.,
the individual diffracted field values at the focal point)
of all the open rings of a traditional Fresnel zone plate
are approximately the same[22,23]. Then, we find that
the focusing contribution of an individual pinhole is in-
versely proportional to the order m of the local ring of
underlying Fresnel zone plate:

g (m) ∝ N−1
m ∝ m−1. (16)

In conclusion, we have investigated the dependence of
focusing contribution of an individual pinhole on the or-
der m of the local ring of underlying traditional Fresnel
zone plate. It is found that the normalized dependence

relation g(m) is simply inversely proportional to the or-
der m. We also present an intuitive explanation for the
dependence relation. The results obtained in this let-
ter are helpful for better understanding of the focusing
property of photon sieves.
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6. R. Chmeĺık, J. Mod. Opt. 43, 1463 (1996).

7. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R.
Adelung, S. Harm, and T. Seemann, Nature 414, 184
(2001).

8. Q. Cao and J. Jahns, J. Opt. Soc. Am. A 19, 2387
(2002).

9. Q. Cao and J. Jahns, J. Opt. Soc. Am. A 20, 1005
(2003).

10. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, J.
Opt. Soc. Am. A 22, 342 (2005).

11. G. Cheng, T. Xing, Y. Yang, and J. Ma, Proc. SPIE
6724, 67240D (2007).

12. Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, Opt. Laser
Technol. 40, 614 (2008).

13. G. Andersen, Opt. Lett. 30, 2976 (2005).

14. G. Andersen and D. Tullson, Appl. Opt. 46, 3706 (2007).

15. G. E. Artzner, J. P. Delaboudinière, and X. Y. Song,
Proc. SPIE 4853, 158 (2003).

16. J. Jia, J. Jiang, C. Xie, and M. Liu, Opt. Commun. 281,
4536 (2008).
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